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• Wave-function-based emulation for nucleon-nucleon scattering in momentum space 
• ajg, C. Drischler, R. J. Furnstahl, J. A. Melendez, and X. Zhang, Phys. Rev. C 107, 054001 (2023), arXiv:2301.05093 

• BUQEYE Guide to Projection-Based Emulators in Nuclear Physics 
• C. Drischler, J. A. Melendez, R. J. Furnstahl, ajg, and X. Zhang, Front. Phys. 10, 92931 (2023), arXiv:2212.04912 

• Model reduction methods for nuclear emulators 
• J. A. Melendez, C. Drischler, R. J. Furnstahl, ajg, and X. Zhang, J. Phys. G 49, 102001 (2022), arXiv:2203.05528 

• Fast & accurate emulation of two-body scattering observables without wave functions 
• J. A. Melendez, C. Drischler, ajg, R. J. Furnstahl, and X. Zhang, Phys. Lett. B 821, 136608 (2021), arXiv:2106.15608 

• Efficient emulators for scattering using eigenvector continuation 
• R. J. Furnstahl, ajg, P. J. Millican, and X. Zhang, Phys. Lett. B 809, 135719 (2020), arXiv:2007.03635

Summary of major contributions

+ publicly available python codes to reproduce results!
Alberto Garcia



The nuclear landscape

Alberto Garcia

Four questions provided by the Long Range Plan for Nuclear Science: 
1. How did visible matter come into being and how does it evolve? 
2. How does subatomic matter organize itself and what phenomena emerge? 
3. Are the fundamental interactions that are basic to the structure of matter fully understood? 
4. How can the knowledge and technical progress provided by nuclear physics best be used to benefit society?

• Schematic overview of the nuclear 
processes on the nuclear chart 

• Nuclei are arranged by proton number Z 
and neutron number N 

• The black squares represent stable nuclei 
• The light gray region represent nuclei 

known to exist 
• The dark gray region represent nuclei 

that are believed to exist but have not 
been measured experimentally

H. Schatz, J. Phys. G 43, 064001 (2016)

Example:



Degrees of freedom

Alberto Garcia

• Resolution scales in nuclear physics.  
• Images of the different degrees of freedom are 

shown while their corresponding energy scales 
are given in purple on the right. 

Nuclear Science Advisory Committee, 
arXiv:0809.3137 (2007)

Focus of low-energy nuclear physics!



Effective field theory (EFT)

Alberto Garcia

• An overview of the order-by-order nucleon-nucleon (NN) 
interactions contained in the chiral expansion organized 
by chiral order and number of interacting nucleons 

• Different interactions associated with the 
nucleon-nucleon (NN) interaction

J. Holt, Phys. Rept. 621, 2-75 (2016)

D.R. Entem et al., Phys. 
Rev. C 96, 024004 (2017)
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• An overview of the order-by-order NN interactions 
contained in the chiral expansion organized by chiral 
order and number of interacting nucleons. 

• Different interactions associated with 
the nucleon-nucleon interaction. 

J. Holt, Phys. Rept. 621, 2-75 (2016)

D.R. Entem et al., Phys. 
Rev. C 96, 024004 (2017)

Effective field theory (EFT)

“…We still don’t have a solid 
theoretical grasp of even the 
simplest nuclear systems.”
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• An overview of the order-by-order NN interactions 
contained in the chiral expansion organized by chiral 
order and number of interacting nucleons. 

• Different interactions associated with 
the nucleon-nucleon interaction. 

J. Holt, Phys. Rept. 621, 2-75 (2016)

D.R. Entem et al., Phys. 
Rev. C 96, 024004 (2017)

S. Kegel et al., Phys. Rev. Lett. 130, 
152502 (2023)Effective field theory (EFT)
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• An overview of the order-by-order NN interactions 
contained in the chiral expansion organized by chiral 
order and number of interacting nucleons. 

• Different interactions associated with 
the nucleon-nucleon interaction. 

J. Holt, Phys. Rept. 621, 2-75 (2016)

D.R. Entem et al., Phys. 
Rev. C 96, 024004 (2017)

N. Michel et al., 
arXiv:2306.05192 (2023)

Moral: Theories need error bars!

Effective field theory (EFT)



Emulators

• Full sampling for Bayesian UQ 
and experimental design can be 
expensive using direct 
calculations (high-fidelity 
system/simulator) 

• Must solve high-fidelity system 
for many sets of parameters

S. Wesolowski et al., J. Phys. G 46, 045102 (2019) 

Alberto Garcia

• Full two-dimensional posterior PDF of LECs at N3LO for the semilocal 
EKM (Epelbaum-Krebs- Meißner) potential in the 1S0  channel 

• Inexpensive: sample from a 
previously trained low-
dimensional surrogate model 
(emulator)



Projection-based emulation

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

• Subspace projection for projection-based emulation

Alberto Garcia

• Blue curve represents high-fidelity 
trajectory, and the orange dot 
represents the high-fidelity solution 

• Two high-fidelity snapshots

• Gray area represents subspace 

• Turquoise dot represents emulator 
prediction with the residual between 
emulator and high-fidelity solution 
given by the dotted line

• Also known as Reduced 
basis method (RBM)



Constructing a reduced-order model (ROM)

Alberto Garcia

C. Drischler, ajg et al., Front. 
Phys. 10 92931 (2023)

• Offline stage (pre-calculate): 
• Parameter set is chosen (using a greedy algorithm, Latin-hypercube sampling, etc.) 
• Construct basis using snapshots from high-fidelity system (simulator) 
• Project high-fidelity system to small-space using snapshots

• Online stage: 
• Make many predictions fast & accurately 
• Take advantage of affine dependence 



Eigen-emulators

Alberto Garcia

Training set:Schrödinger equation:

Variational approach (Rayleigh-Ritz):

Implementation: Snapshots

Basis weights

C. Drischler, ajg, et al., Front. Phys. 10 92931 (2023)
J.A. Melendez, ajg, et al., J. Phys. G 49, 102001 (2022) 

Linear algebra in small-space!

Reduced-order equations:

Can also use Galerkin formalism!



Anharmonic oscillator potential

Alberto Garcia

• Solve: a particle with zero angular momentum 
within a 3D anharmonic oscillator potential 

• Compare versus other methods (i.e., harmonic 
oscillator basis and Gaussian process)

C. Drischler, ajg et al., Front. 
Phys. 10 92931 (2023)

Affine! 

Non-affine! 



Wave functions

Alberto Garcia

• Emulation of the ground state wave functions 
• Basis used to train the emulators given in gray 
• Three validation parameter sets denoted by colored dots 
• High-fidelity solutions are denoted by the black curves

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)



Wave functions

Alberto Garcia

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)



Observables

Alberto Garcia

• Plotted for each validation parameter set 
• Calculated three different way: 

• Reduced basis method (RBM) emulator 
• Harmonic oscillator (HO) basis 
• Gaussian process (GP)

• Emulate observables

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)



Scattering RBM example

Alberto Garcia

• Minnesota potential: approximation of nuclear interaction between neutron and proton 
• Proof-of-principle for the application of RBM for scattering problems

R.J. Furnstahl, ajg et al., Phys. 
Lett. B 809, 135719 (2020)

Affine! 

Sampled using 
Latin-hypercube 
sampling (LHS)



Scattering RBM example

Alberto Garcia

• Minnesota potential: approximation of nuclear interaction between neutron and proton 
• Proof-of-principle for the application of RBM for scattering problems

R.J. Furnstahl, ajg et al., Phys. 
Lett. B 809, 135719 (2020)

Affine! 

200 sampled parameters total!



Total cross section emulation
• Partial waves up to               
• Number of parameters  25 
• Used LHS to sample 500 parameter 

sets in an interval of [-5, 5]

• Kohn anomalies mitigated!

• Errors negligible compared to other 
uncertainties 

• Speed is highly implementation-
dependent! 

• Consistent for 

Alberto Garcia

ajg et al., Phys. Rev. C 
107, 054001 (2023)



Emulation of other observables

• Differential cross section: probability of observing a scattered particle in a specific 
quantum state per solid angle 

• Analyzing power: changes in polarization of the beam or target nuclei
Alberto Garcia

ajg et al., Phys. Rev. C 
107, 054001 (2023)



Different methods to construct emulators

Alberto Garcia

C. Drischler, ajg, et al., Front. 
Phys. 10 92931 (2023)

• Two-body scattering emulators can be constructed using different formulations 
• Variational methods 
• Coordinate space and momentum space 

• All variational methods have Galerkin counterparts

(KVP)

(KVP)

(NVP)

(SVP)



Reduced-order model (ROM) for scattering w/ KVP

Alberto Garcia

Generalized Kohn variational principle (KVP):

Training set:Hamiltonian: K-matrix formulation:

R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020) 
C. Drischler, ajg et al., Front. Phys. 10 92931 (2023) 
ajg et al., Phys. Rev. C 107, 054001 (2023)

Implementation: Snapshots

Basis weights

Linear algebra in small-space!

Reduced-order equations:



Training set:LS equation: K-matrix formulation:

Newton variational principle (NVP):

Reduced-order model (ROM) for scattering w/ NVP

Alberto Garcia

Implementation:

J.A. Melendez, ajg et al., Phys. Lett. B 821, 136608 (2021)

Snapshots

Basis weights Linear algebra in small-space!

Reduced-order equations:



Emulating multiple boundary conditions w/ KVP

Alberto Garcia

• Examples of u matrices

1. Rescale functional quantities

2. Convert back into K-matrix form

Method from: Drischler et al., Phys. Lett. B 823, 136777 (2021)



Mitigating Kohn anomalies w/ KVP

1. Relative residuals between the emulator predictions of all the KVPs

Alberto Garcia

2. Apply relative consistency check

3. Estimate S matrix

Method from: Drischler et al., Phys. Lett. B 823, 136777 (2021)



Anomalies example

Alberto Garcia

• Kohn anomalies mitigated! 
• Mesh-induced spikes in high-fidelity LS equation detected and removed

Anomaly

Numerical spikes

ajg et al., Phys. Rev. C 107, 054001 (2023)



Alberto Garcia

Emulators Summary and Outlook
• Developed and applied first RBM emulator for scattering applications using KVP and coordinate-space 

wave functions 

• Developed first RBM emulator using scattering matrices as the trial basis and applied it to state-of-the-art 
chiral EFT potential for the prediction of the total cross section 

• Extended coordinate space emulator to momentum space, developed the methodology for coupled-
channel emulation, and applied it to the prediction of spin observables 

• Provided documented code and guides for the nuclear physics community 

• Interactions: local, nonlocal, k-space, r-space, complex, Coulomb, chiral EFT

• Application of emulators and Bayesian methods to NN uncertainty quantification (already being used!) 
• Apply active-learning for effectively choosing training points 
• Hyper-reduction methods for non-affine structures 
• Extension of emulators to three-body scattering and emulation across different energies 
• Connection between RBM emulators, reaction models, and experiments at new-generation rare-

isotope facilities



Neural networks

Alberto Garcia

• Artificial neural networks (ANNs) are 
used to identify patterns in a dataset 

• Composed of input, output, and 
hidden layer(s)

• Fall under data-driven methods 

• Goal: develop ANN emulators for 
applications to nuclear systems



Applications of ANNs

Alberto Garcia

• No-core shell model (NCSM): monotonic convergence pattern displayed by the 
observables at fixed        due to the problem being variational  lower bound 

• Calculations are performed in a harmonic oscillator (HO) basis and truncated to a 
finite model space of size          



Results

Alberto Garcia

• Training: ABS method

• Extrapolate to hard-to-
calculate nuclei:

• Train 1000 ANNs with three 
nuclei (plus synthetic data): 

• Sample data set composed of 
three values of         and four 
consecutive values of
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• Train 1000 ANNs with three 
nuclei (plus synthetic data): 

• Sample data set composed of 
three values of         and four 
consecutive values of

• Extrapolate to hard-to-
calculate nuclei:

• Training: DIFF method



Statistics

Alberto Garcia

• Average ground state binding energies and standard deviations (in MeV) for different 
nuclei obtained from evaluating 1000 ANNs using the ABS and DIFF method



Statistics

Alberto Garcia

• Average ground state binding energies and standard deviations (in MeV) for different 
nuclei obtained from evaluating 1000 ANNs using the ABS and DIFF method 

• Overall, DIFF method works best



Training ANNs in IR/UV-convergence regions

Alberto Garcia

• Investigate these regions with ANNs to see if correlations between nuclear observables 
that can be attributed to UV errors are detected 

• Enable better extrapolations in the region where the IR truncation errors are converged



Results

Alberto Garcia



Summary and Outlook

Alberto Garcia

• Neural networks may help help detect correlations between observables of different 
nuclei, which can be used as an extrapolation tool to study nuclei along the proton and 
neutron drip lines 

• Neural networks may be analyzed from first-principles using an effective-theory-
motivated approach

• Constructed a universal neural network that was trained on ground state binding 
energies two different way using easy-to-calculate nuclei  

• Extrapolated to heavier, hard-to-converge systems 

• Conducted preliminary studies of the IR and UV errors-dominated regions using neural 
networks 

• Investigated how the accuracy of the predictions vary with varying network architecture



• Wave-function-based emulation for nucleon-nucleon scattering in momentum space 
• ajg, C. Drischler, R. J. Furnstahl, J. A. Melendez, and X. Zhang, Phys. Rev. C 107, 054001 (2023), arXiv:2301.05093 
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• Model reduction methods for nuclear emulators 
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• Fast & accurate emulation of two-body scattering observables without wave functions 
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Summary of major contributions

+ publicly available python codes to reproduce results!
Alberto Garcia



Thank you!

Alberto Garcia



Alberto Garcia

Extra slides



Model order reduction (MOR)
• Constructing a reduced-order model (ROM)

• Reduced Basis method (RBM): 
• Sub-class of model-driven scheme 
• Different methods to choose parameter sets 
• A basis is constructed out of snapshots 
• RBM model is built from a global basis projection

• Reduction schemes: 
• Data-driven: interpolate output of high-fidelity model w/o understanding  non-intrusive 
• Examples: Gaussian processes, neural networks 
  
• Model-driven: derive reduced-order equations from high-fidelity equations  intrusive 
• Examples: physics-based, respects underlying structure

Alberto Garcia

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)
J.A. Melendez ajg et al., J. Phys. G 49, 102001 (2022) 

Reduced order models

Data driven
non-intrusive hybrid

Model driven
intrusive

RBMGP ANN EC 



Eigen-emulators

Alberto Garcia

Training set:Schrödinger equation (weak form):

Galerkin approach:

• Produces same set of reduced-order equations as with variational approach!

Choose:

More general:

C. Drischler, ajg, et al., Front. Phys. 10 92931 (2023)
J.A. Melendez, ajg, et al., J. Phys. G 49, 102001 (2022) 



Scattering emulators

Alberto Garcia

• Some examples:

J.A. Melendez, ajg et al., J. Phys. G 49, 102001 (2022) 

where      is the boundary and 
the domain

• We want to find the solution of a time-
independent differential equation such that 



Different methods to construct emulators

Alberto Garcia

• Variational method  stationary 
functional

J.A. Melendez, ajg et al., J. Phys. G 49, 102001 (2022) 

• Galerkin projection  use weak form



Variational vs. Galerkin approach

Alberto Garcia

J.A. Melendez, ajg et al., J. 
Phys. G 49, 102001 (2022) 

• Example: Poisson equation with Neumann BCs

Variational approach

Poisson eq BCsIf 

where

Galerkin approach

Assert holds for: 



Deriving Poisson eqs from functional
• Apply Green’s identity

Alberto Garcia



Deriving emulator equation: Variational

Alberto Garcia



Deriving emulator equation: Galerkin

Apply Green’s identity!

Assert holds for: 

Alberto Garcia



Unconstrained KVP emulator

since

Alberto Garcia



Unconstrained KVP emulator

Alberto Garcia



Comparison between emulators

Alberto Garcia

• Yamaguchi potential for 

• Has an exact (mesh-independent) answer!

C. Drischler, ajg et al., Front. 
Phys. 10 92931 (2023)



Comparison between emulators

Alberto Garcia

• Yamaguchi potential for 

• Has an exact (mesh-independent) answer!

C. Drischler ajg, et al., Front. 
Phys. 10 92931 (2023)



Origin emulators

Choose test functions

Alberto Garcia



Origin emulator (in coordinate space)

Alberto Garcia

• Non-variational-based emulator 
• Snapshots are composed of the boundary conditions

• Sum of Gaussians potential:

C. Drischler, ajg et al., Front. 
Phys. 10 92931 (2023)



Results for NVP emulator - Extrapolation

Alberto Garcia
J.A. Melendez, ajg et al., Phys. Lett. B 821, 136608 (2021)

• Here: Extrapolation results for NVP 
• Cross marks best-fit value for V0s 

• Potential: 

• Only vary  

• Train with two repulsive parameter sets 
• Extrapolate to attractive potentials



Results for NVP emulator with Coulomb

Alberto Garcia
J.A. Melendez, ajg et al., Phys. Lett. B 821, 136608 (2021)

• Problematic for LS equation since it is a long-range interaction 
• Solution: cut off potential at short distance              , emulate with new potential, 

and match conditions with emulated solution to obtain phase shifts 
• Matching: finding phase shifts with respect to the Coulomb wave functions 
• Here: proton-alpha scattering with non-local potential in s-wave



Results for NVP emulator - Gradients

Alberto Garcia
J.A. Melendez, ajg et al., Phys. Lett. B 821, 136608 (2021)

• Emulate gradients using NVP 
• Useful for optimization and sampling algorithms that require gradients 
• Examples: Newton’s method, Gradient Descent



I. Svensson et al., 
 arXiv:2304.02004

Chiral EFT for NN 
LECs at N2LO using HMC 
Uses K-matrix emulator

https://arxiv.org/abs/2304.02004


KVP emulator in coordinate space

Alberto Garcia

Implementation: Snapshots

Basis weights

R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020) 
C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

Coordinate space:



Results for a complex potential

Alberto Garcia

• Application of emulator to complex 
potentials  used for nuclear 
reactions 

• Here: Wood-Saxon optical potential

• Emulate the K matrix

• Optimal values: 

• Parameter set:
• 200 sampled parameter sets!

R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)



R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)

Alberto Garcia



R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)

Alberto Garcia



R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)

• Nonlocal potential 
• Here:  
  proton-alpha  
  scattering in s-channel

• Emulate the K matrix



Alberto Garcia

R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)

• Nonlocal potential 
• Here: proton-alpha 

scattering in p-channel

• Emulate the K matrix



Alberto Garcia

R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020)



KVP emulator in momentum space

Alberto Garcia

Implementation: Snapshots

Basis weights

ajg et al., Phys. Rev. C 107, 054001 (2023)

Momentum space:
For coordinate space implementation: 
R.J. Furnstahl, ajg et al., Phys. Lett. B 809, 135719 (2020) 
C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)



• Here: semi-local momentum-space regularized 
potential

Chiral EFT potentials for NN scattering
P. Reinert et al., Eur. Phys. J B 54, 86 (2018)

• Emulate neutron-proton (np) observables at multiple 
cutoffs 

• Affine dependence on the low-energy couplings 
(LECs): 

     only calculate matrix elements once!

Alberto Garcia



Results for 1S0 channel

Alberto Garcia

ajg et al., Phys. Rev. C 
107, 054001 (2023)

• Glöckle spline interpolation: 

• Three parameters    
• Parameters sampled using Latin-hypercube sampling (LHS)



Emulation of coupled channels

Alberto Garcia

• Depends on the Petrov-Galerkin formalism ajg et al., Phys. Rev. C 107, 054001 (2023)



Results for coupled channels

Alberto Garcia

• Six non-redundant LECs    
• Parameters sampled using Latin-hypercube sampling (LHS)

ajg et al., Phys. Rev. C 
107, 054001 (2023)

• Glöckle spline interpolation: 



Total cross section emulation

Alberto Garcia

ajg et al., Phys. Rev. C 
107, 054001 (2023)

• Partial waves up to               
• Used LHS to sample 500 parameter 

sets in an interval of [-5, 5]

• Different cutoff!

• Errors negligible compared to other 
uncertainties 

• Speed is highly implementation-
dependent! 

• Consistent for 



Total cross section emulation w/ anomalies

Alberto Garcia

• Partial waves up to               
• Used LHS to sample 500 parameter 

sets in an interval of [-5, 5]

• Errors negligible compared to other 
uncertainties 

• Speed is highly implementation-
dependent! 

• Consistent for 

• Glöckle spline interpolation: 

ajg et al., Phys. Rev. C 107, 054001 (2023)



Table of spin observables emulation

• Angle-averaged relative errors (base-10 logarithm) 
• Different basis size 
• Consistent for 

Alberto Garcia

ajg et al., Phys. Rev. C 
107, 054001 (2023)



Neural networks

Alberto Garcia

• Different types of networks: 
• Supervised learning 

• Desired output already known 
• Unsupervised learning 

• Desired output unknown 

• Key to neural networks 
• Layers transform the inputs using a 

series of mathematical operations 
• Learns how to map the inputs to 

the outputs



How do neural networks work

Alberto Garcia

• Input data is split into train, validation, and 
test sets 

• Further split into training and target inputs 

• Hidden layers are responsible for learning 
the patterns found in the data set 

• Output gives us what the network thinks 
the target inputs are given the data set 

• Determine how close the prediction is by 
calculating the loss function 

• If condition is not met, the weights are 
fine-tuned in backpropagation



Basics of training

Alberto Garcia



Training process

Alberto Garcia



Different components: initializer

Alberto Garcia

• Used to initialize the weights 

• Randomly sample weights from some distribution 

• Most common method is Glorot Uniform 

• Glorot initialization maintains the same smooth distribution 
throughout the training process due to normalization



Activation functions

Alberto Garcia

• Used to initialize the 
weights 

• Randomly sample weights 
from some distribution 

• Glorot initialization 
maintains the same 
smooth distribution 
throughout training 
process due to 
normalization



Different components: activation function

Alberto Garcia

• ReLU pros: 
• Prevents vanishing gradients since derivative is 0 or 1 
• Computationally more efficient 
• Better convergence performance 

• ReLU cons: 
• Outputs are unconstrained and can cause issues 
• Dying ReLU problem: too many activations are below zero 

which can limit learning 
• Can be prevented using leaky ReLU



Different components: loss function

Alberto Garcia

• Used to calculate the error 
between prediction and target 

• Here: mean-square-error (MSE) 

• Plane: predictions 
• Red dots: target inputs 
• Goal is to minimize distance 

between the red dots and plane



Different components: optimizer

Alberto Garcia

• Algorithm used to minimize the loss 
• Learning rate is used to scale gradients 
• Prevents weights from changing too fast 

• Common optimizers:  
• Stochastic gradient descent (SGD) 
• ADAM 

• SGD: adjusts all parameters with same learning rate 
• Slower convergence, but can perform better on unseen data 

• ADAM: each parameter has own learning rate 
• May converge too rapidly and fall into non-ideal minimum



Backpropagation

Alberto Garcia

• Weights get adjusted by an optimization algorithm in such a way as to minimize the 
loss

• Derivative of the loss function with respect to every weight in the current layer is 
calculated, multiplied by the learning rate, and subtracted from the corresponding 
weights

• New weights are passed to the next layer 

• Process continues until all the weights in the network are adjusted 

• Network undergoes a forward pass and recalculates a training and validation loss

• Process is repeated until a desired accuracy has been reached or until the model is 
trained as many times as the user chooses


