

Emulators and their applications in low-energy nuclear physics

Alberto J. Garcia PhD defense 2023

Summary of major contributions

- Wave-function-based emulation for nucleon-nucleon scattering in momentum space
 - ajg, C. Drischler, R. J. Furnstahl, J. A. Melendez, and X. Zhang, Phys. Rev. C 107, 054001 (2023), arXiv:2301.05093
- BUQEYE Guide to Projection-Based Emulators in Nuclear Physics
 - C. Drischler, J. A. Melendez, R. J. Furnstahl, ajg, and X. Zhang, Front. Phys. 10, 92931 (2023), arXiv:2212.04912
- Model reduction methods for nuclear emulators
 - J. A. Melendez, C. Drischler, R. J. Furnstahl, ajg, and X. Zhang, J. Phys. G 49, 102001 (2022), arXiv:2203.05528
- Fast & accurate emulation of two-body scattering observables without wave functions
 - J. A. Melendez, C. Drischler, ajg, R. J. Furnstahl, and X. Zhang, Phys. Lett. B 821, 136608 (2021), arXiv:2106.15608
- Efficient emulators for scattering using eigenvector continuation
 - R. J. Furnstahl, ajg, P. J. Millican, and X. Zhang, Phys. Lett. B 809, 135719 (2020), arXiv:2007.03635

+ publicly available python codes to reproduce results!

The nuclear landscape

- Schematic overview of the nuclear processes on the nuclear chart
- Nuclei are arranged by proton number Z and neutron number N
- The black squares represent stable nuclei
- The light gray region represent nuclei known to exist
- The dark gray region represent nuclei that are believed to exist but have not been measured experimentally

Four questions provided by the Long Range Plan for Nuclear Science:

- 1. How did visible matter come into being and how does it evolve?
- 2. How does subatomic matter organize itself and what phenomena emerge?
- 3. Are the fundamental interactions that are basic to the structure of matter fully understood?
- 4. How can the knowledge and technical progress provided by nuclear physics best be used to benefit society?

Degrees of freedom

Nuclear Science Advisory Committee, arXiv:0809.3137 (2007)

 An overview of the order-by-order nucleon-nucleon (NN) interactions contained in the chiral expansion organized by chiral order and number of interacting nucleons

 Different interactions associated with the nucleon-nucleon (NN) interaction

J. Holt, Phys. Rept. 621, 2-75 (2016

D.R. Rev.

 $(Q/\Lambda_*)^p$

N°LO

Theory and experiment disagree on alpha particles **⊘**

Scientists tried to solve the mystery of the helium nucleus — and ended up more confused than ever

A New Experiment Casts Doubt on the Leading Theory of the Nucleus

contained in the chiral expansion organized by chiral order and number of interacting nucleons.

 $(Q/\Lambda_*)^{\dagger}$ (Q/Λ_s) "...We still don't have a solid NNLO theoretical grasp of even the simplest nuclear systems." N°LO $IQ/\Lambda_{*}Y$ contained in the chiral expansion organized by chiral

S. Kegel et al., Phys. Rev. Lett. **130**, 152502 (2023)

N. Michel et al., arXiv:2306.05192 (2023)

Emulators

- Full sampling for Bayesian UQ and experimental design can be expensive using direct calculations (high-fidelity system/simulator)
- Must solve high-fidelity system for many sets of parameters
- Inexpensive: sample from a previously trained lowdimensional surrogate model (emulator)

S. Wesolowski et al., J. Phys. G 46, 045102 (2019)

Full two-dimensional posterior PDF of LECs at N3LO for the semilocal EKM (Epelbaum-Krebs- Meißner) potential in the 1SO channel

Projection-based emulation

Subspace projection for projection-based emulation

- Blue curve represents high-fidelity trajectory, and the orange dot represents the high-fidelity solution
- Two high-fidelity snapshots
- Gray area represents subspace
- Turquoise dot represents emulator prediction with the residual between emulator and high-fidelity solution given by the dotted line
- Also known as Reduced basis method (RBM)

C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023)

Constructing a reduced-order model (ROM)

CPU time scales with the length of (

- Offline stage (pre-calculate):
 - Parameter set is chosen (using a greedy algorithm, Latin-hypercube sampling, etc.)
 - Construct basis using snapshots from high-fidelity system (simulator)
 - Project high-fidelity system to small-space using snapshots

Online stage:

- Make many predictions fast & accurately
- Take advantage of affine dependence $\rightarrow V(\theta) = V^0 + \theta \cdot V^1$

C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023)

Eigen-emulators

Schrödinger equation:

Training set:

$$H(\boldsymbol{\theta})|\psi(\boldsymbol{\theta})\rangle = E(\boldsymbol{\theta})|\psi(\boldsymbol{\theta})\rangle \longrightarrow \{(\boldsymbol{\theta})_i\}$$

C. Drischler, ajg, et al., Front. Phys. 10 92931 (2023) J.A. Melendez, ajg, et al., J. Phys. G **49**, 102001 (2022)

Variational approach (Rayleigh-Ritz):

$$\mathcal{E}[\widetilde{\psi}] = \langle \widetilde{\psi} | H(\boldsymbol{\theta}) | \widetilde{\psi} \rangle - \widetilde{E}(\boldsymbol{\theta}) (\langle \widetilde{\psi} | \widetilde{\psi} \rangle - 1)$$

Can also use Galerkin formalism!

Implementation: Snapshots

 $\delta \mathcal{E}[\widetilde{\psi}] = 0$ $|\widetilde{\psi}\rangle = \sum_{i}^{n_{\rm b}} \beta_i |\psi_i\rangle \equiv X\vec{\beta},$ Basis weights

$$X = \left[|\psi_1\rangle |\psi_2\rangle \cdots |\psi_{n_b}\rangle \right],$$

Reduced-order equations:

$$\widetilde{H}(\boldsymbol{\theta})\vec{\beta}_{\star}(\boldsymbol{\theta}) = \widetilde{E}(\boldsymbol{\theta})\widetilde{N}\vec{\beta}_{\star}(\boldsymbol{\theta})$$

$$[\widetilde{H}(\boldsymbol{\theta})]_{ij} = \langle \psi_i | H(\boldsymbol{\theta}) | \psi_j \rangle, \ [\widetilde{N}]_{ij} = \langle \psi_i | \psi_j \rangle$$

Linear algebra in small-space!

Anharmonic oscillator potential

- Solve: a particle with zero angular momentum within a 3D anharmonic oscillator potential
- Compare versus other methods (i.e., harmonic oscillator basis and Gaussian process)

Wave functions

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

- Emulation of the ground state wave functions
- Basis used to train the emulators given in gray
- Three validation parameter sets denoted by colored dots
- High-fidelity solutions are denoted by the black curves

Wave functions

C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023)

Emulate observables

$$\langle \psi(\boldsymbol{\theta}) | O(\boldsymbol{\theta}) | \psi(\boldsymbol{\theta}) \rangle \approx \vec{\beta}_{\star}^{\dagger} \widetilde{O} \vec{\beta}_{\star}$$

- Plotted for each validation parameter set
- Calculated three different way:
 - Reduced basis method (RBM) emulator
 - Harmonic oscillator (HO) basis
 - Gaussian process (GP)

Scattering RBM example

- Minnesota potential: approximation of nuclear interaction between neutron and proton
- Proof-of-principle for the application of RBM for scattering problems

$$V_{1S_0}(r) = V_{0R}e^{-\kappa_R r^2} + V_{0s}e^{-\kappa_s r^2} \quad \text{with} \quad \kappa_R = 1.487 \, \text{fm}^{-2}, \kappa_s = 0.465 \, \text{fm}^{-2}$$

$$\theta = \{V_{0R}, V_{0s}\} \quad \stackrel{\text{"physical"}}{\longrightarrow} \quad \{200 \, \text{MeV}, -178 \, \text{MeV}\}$$

Scattering RBM example

- Minnesota potential: approximation of nuclear interaction between neutron and proton
- Proof-of-principle for the application of RBM for scattering problems

$$V_{1S_{0}}(r) = V_{0R}e^{-\kappa_{R}r^{2}} + V_{0s}e^{-\kappa_{s}r^{2}} \quad \text{with} \quad \kappa_{R} = 1.487 \,\text{fm}^{-2}, \kappa_{s} = 0.465 \,\text{fm}^{-2}$$

$$\theta = \{V_{0R}, V_{0s}\} \quad \stackrel{\text{"physical"}}{\longrightarrow} \quad \{200 \,\text{MeV}, -178 \,\text{MeV}\}$$

Total cross section emulation

ajg et al., Phys. Rev. C 107, 054001 (2023)

- Partial waves up to j = 20
- Number of parameters → 25
- Used LHS to sample 500 parameter sets in an interval of [-5, 5]
- Errors negligible compared to other uncertainties
- Speed is highly implementationdependent!
- Consistent for $\Lambda = 400 550 \, \mathrm{MeV}$
- Kohn anomalies mitigated!

Emulation of other observables

ajg et al., Phys. Rev. C 107, 054001 (2023)

- Differential cross section: probability of observing a scattered particle in a specific quantum state per solid angle
- Analyzing power: changes in polarization of the beam or target nuclei

Different methods to construct emulators

	Variational Principle		Galerkin Projection Information			
	Name	Functional for K	Strong Form	Trial Basis	Test Basis	Constrained?
(KVP)	Kohn (λ)	$\widetilde{K}_E + \langle \widetilde{\psi} H - E \widetilde{\psi} angle$	$H\ket{\psi}=E\ket{\psi}$	$ \psi_i angle$	$\langle \psi_i $	Yes
(KVP)	$\begin{array}{c} {\rm Kohn} \\ {\rm (No} \lambda) \end{array}$	$\begin{split} &\langle \widetilde{\chi} H-E \widetilde{\chi}\rangle + \langle \phi V \widetilde{\chi}\rangle \\ &+ \langle \phi H-E \phi\rangle + \langle \widetilde{\chi} V \phi\rangle \end{split}$	$\left[E-H ight]\left \chi ight angle =V\left \phi ight angle$	$ \chi_i angle$	$\langle \chi_i $	No
(SVP)	Schwinger	$\langle \widetilde{\psi} V \phi \rangle + \langle \phi V \widetilde{\psi} \rangle \ - \langle \widetilde{\psi} V - V G_0 V \widetilde{\psi} \rangle$	$\ket{\psi} = \ket{\phi} + G_0 V \ket{\psi}$	$\ket{\psi_i}$	$\langle \psi_i $	No
(NVP)	Newton	$V + VG_0\widetilde{K} + \widetilde{K}G_0V$ $-\widetilde{K}G_0\widetilde{K} + \widetilde{K}G_0VG_0\widetilde{K}$	$K = V + VG_0K$	K_i	K_i	No

- Two-body scattering emulators can be constructed using different formulations
 - Variational methods
 - Coordinate space and momentum space
- All variational methods have Galerkin counterparts

C. Drischler, ajg, et al., Front. Phys. **10** 92931 (2023)

Reduced-order model (ROM) for scattering w/ KVP

Hamiltonian:

Training set:

K-matrix formulation:

$$\widehat{H}(\boldsymbol{\theta}) = \widehat{T} + \widehat{V}(\boldsymbol{\theta}) \longrightarrow \{(\boldsymbol{\theta})_i\}$$

$$K_s(E) = \tan \delta_s(E)$$

Generalized Kohn variational principle (KVP):

$$E = k_0^2 / 2\mu$$

$$\mathcal{L}^{ss'}[\widetilde{\psi}] = \widetilde{L}^{ss'}(E) - \frac{2\mu k_0}{\det \boldsymbol{u}} \langle \widetilde{\psi}^s | \widehat{H}(\boldsymbol{\theta}) - E | \widetilde{\psi}^{s'} \rangle$$

$$\mathcal{L}^{ss'}[\psi + \delta\psi] = L_E^{ss'} + \mathcal{O}(\delta L^2)$$

R.J. Furnstahl, ajg et al., Phys. Lett. B **809**, 135719 (2020) C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023) ajg et al., Phys. Rev. C **107**, 054001 (2023)

Implementation: Snapshots

Reduced-order equations:

$$|\widetilde{\psi}^s\rangle \equiv \sum_{i=1}^{n_{\rm b}} \beta_i |\psi_i^s\rangle$$

$$\mathcal{L}^{ss'}[\vec{\beta}] = \beta_i L_{E,i}^{ss'} - \frac{1}{2} \beta_i \Delta \widetilde{U}_{ij}^{ss'} \beta_j$$
$$\Delta \widetilde{U}_{ij}^{ss'}(\boldsymbol{\theta}) = \frac{2\mu k_0}{\det \boldsymbol{u}} \left[\langle \psi_i^s (\widehat{V}(\boldsymbol{\theta}) - \widehat{V}_j) \psi_j^{s'} \rangle + (i \leftrightarrow j) \right]$$

Basis weights

Linear algebra in small-space!

Reduced-order model (ROM) for scattering w/ NVP

LS equation:

Training set:

K-matrix formulation:

$$K(\boldsymbol{\theta}) = V(\boldsymbol{\theta}) + V(\boldsymbol{\theta})G_0(E)K(\boldsymbol{\theta}) \rightarrow \{(\boldsymbol{\theta})_i\}$$

$$K_s(E) = \tan \delta_s(E)$$
$$E = k_0^2 / 2\mu$$

Newton variational principle (NVP):

$$\mathcal{K}[\widetilde{K}] = V + VG_0\widetilde{K} + \widetilde{K}G_0K - \widetilde{K}G_0\widetilde{K} + \widetilde{K}G_0VG_0\widetilde{K}$$
$$\mathcal{K}[K + \delta K] = K + \mathcal{O}(\delta K^2)$$

Implementation: Snapshots

Reduced-order equations:

$$\widetilde{K}(ec{eta}) = \sum_{i=1}^{n_{
m b}} eta_i K_i \qquad \langle \phi'
angle$$
 Basis weights

$$\widetilde{K}(\vec{\beta}) = \sum_{i=1}^{n_{\rm b}} \beta_i K_i \qquad \langle \phi' | \mathcal{K}(\boldsymbol{\theta}, \vec{\beta}) | \phi \rangle \approx \langle \phi' | V(\boldsymbol{\theta}) | \phi \rangle + \frac{1}{2} \vec{m}^T M^{-1}(\boldsymbol{\theta}) \vec{m}$$

Linear algebra in small-space!

Emulating multiple boundary conditions w/ KVP

Examples of u matrices

$$oldsymbol{u}_K = egin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}, \ oldsymbol{u}_{K^{-1}} = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}, \ oldsymbol{u}_T = egin{pmatrix} 1 & 0 \ i & 1 \end{pmatrix}$$

1. Rescale functional quantities

$$\Delta \tilde{U}^{(u')} = C^{'-1}(L_i)C^{'-1}(L_j)\frac{\det \mathbf{u}}{\det \mathbf{u}'}\Delta \tilde{U}^{(u)} \qquad C'(L) = \frac{\det \mathbf{u}}{\det \mathbf{u}'}\frac{u'_{11} - u'_{10}K(L)}{u_{11} - u_{10}K(L)}$$
$$L'(L) = \frac{-u'_{01} + u'_{00}K(L)}{u'_{11} - u'_{10}K(L)}$$

2. Convert back into K-matrix form

Mitigating Kohn anomalies w/ KVP

1. Relative residuals between the emulator predictions of all the KVPs

$$\gamma_{\text{rel}}(L_1, L_2) = \max \left\{ \left| \frac{S(L_1)}{S(L_2)} - 1 \right|, \left| \frac{S(L_2)}{S(L_1)} - 1 \right| \right\}$$

2. Apply relative consistency check

$$\gamma_{\rm rel} < \epsilon_{\rm rel} = 10^{-1}$$

3. Estimate S matrix

$$[S]_{\text{KVP}}^{\text{(mixed)}} = \sum_{(L_1, L_2) \in \mathcal{P}} \omega(L_1, L_2) \frac{S(L_1) + S(L_2)}{2}, \quad \omega(L_1, L_2) = \frac{\gamma_{\text{rel}}(L_1, L_2)^{-1}}{\sum_{(L'_1, L'_2) \in \mathcal{P}} \gamma_{\text{rel}}(L'_1, L'_2)^{-1}}$$

Anomalies example

Kohn anomalies mitigated!

ajg et al., Phys. Rev. C **107**, 054001 (2023)

Mesh-induced spikes in high-fidelity LS equation detected and removed

Emulators Summary and Outlook

- Developed and applied first RBM emulator for scattering applications using KVP and coordinate-space wave functions
- Developed first RBM emulator using scattering matrices as the trial basis and applied it to state-of-the-art chiral EFT potential for the prediction of the total cross section
- Extended coordinate space emulator to momentum space, developed the methodology for coupledchannel emulation, and applied it to the prediction of spin observables
- Provided documented code and guides for the nuclear physics community
- Interactions: local, nonlocal, k-space, r-space, complex, Coulomb, chiral EFT
- Application of emulators and Bayesian methods to NN uncertainty quantification (already being used!)
- Apply active-learning for effectively choosing training points
- Hyper-reduction methods for non-affine structures
- Extension of emulators to three-body scattering and emulation across different energies
- Connection between RBM emulators, reaction models, and experiments at new-generation rareisotope facilities

Neural networks

- Artificial neural networks (ANNs) are used to identify patterns in a dataset
- Composed of input, output, and hidden layer(s)
- Fall under data-driven methods
- Goal: develop ANN emulators for applications to nuclear systems

Applications of ANNs

- No-core shell model (NCSM): monotonic convergence pattern displayed by the observables at fixed $\hbar\Omega$ due to the problem being variational \rightarrow lower bound
- Calculations are performed in a harmonic oscillator (HO) basis and truncated to a finite model space of size

Results

• Train 1000 ANNs with three nuclei (plus synthetic data):

$${}^{2}\text{H}, {}^{3}\text{H}, {}^{4}\text{He}$$

- Sample data set composed of three values of $\hbar\Omega$ and four consecutive values of $N_{\rm max}$
- Extrapolate to hard-tocalculate nuclei:

Training: ABS method

$$d_{\text{ABS}}^{N_{\text{max}}} = (E_{\hbar\Omega_{1}}^{N_{\text{max}}-6}, E_{\hbar\Omega_{1}}^{N_{\text{max}}-4}, E_{\hbar\Omega_{1}}^{N_{\text{max}}-2}, E_{\hbar\Omega_{1}}^{N_{\text{max}}},$$

$$E_{\hbar\Omega_{2}}^{N_{\text{max}}-6}, E_{\hbar\Omega_{2}}^{N_{\text{max}}-4}, E_{\hbar\Omega_{2}}^{N_{\text{max}}-2}, E_{\hbar\Omega_{2}}^{N_{\text{max}}},$$

$$E_{\hbar\Omega_{3}}^{N_{\text{max}}-6}, E_{\hbar\Omega_{3}}^{N_{\text{max}}-4}, E_{\hbar\Omega_{3}}^{N_{\text{max}}-2}, E_{\hbar\Omega_{3}}^{N_{\text{max}}})$$

Results

• Train 1000 ANNs with three nuclei (plus synthetic data):

- Sample data set composed of three values of $\hbar\Omega$ and four consecutive values of $N_{\rm max}$
- Extrapolate to hard-tocalculate nuclei:

Training: DIFF method

$$d_{\text{DIFF}}^{N_{\text{max}}} = (\Delta E_{\hbar\Omega_{1}}^{N_{\text{max}}-4}, \Delta E_{\hbar\Omega_{1}}^{N_{\text{max}}-2}, \Delta E_{\hbar\Omega_{1}}^{N_{\text{max}}},$$

$$\Delta E_{\hbar\Omega_{2}}^{N_{\text{max}}-4}, \Delta E_{\hbar\Omega_{2}}^{N_{\text{max}}-2}, \Delta E_{\hbar\Omega_{2}}^{N_{\text{max}}},$$

$$\Delta E_{\hbar\Omega_{3}}^{N_{\text{max}}-4}, \Delta E_{\hbar\Omega_{3}}^{N_{\text{max}}-2}, \Delta E_{\hbar\Omega_{3}}^{N_{\text{max}}})$$

Statistics

Nuclei	$oxed{ ext{Avg. } E_{ ext{g.s.}}^{ ext{ABS}}}$	${\rm Avg.} E_{\rm g.s.}^{\rm DIFF}$	Extrap.	Conv. result
$^2\mathrm{H}$	-2.182 ± 0.037	-2.220 ± 0.030	-2.183 ± 0.091	-2.200
$^3\mathrm{H}$	-8.534 ± 0.045	-8.496 ± 0.013	-8.473 ± 0.010	-8.481
$^4{ m He}$	-28.554 ± 0.081	-28.534 ± 0.006	-28.525 ± 0.009	-28.524
$^6{ m Li}$	-31.933 ± 0.223	-32.281 ± 0.221	-32.098 ± 0.317	
$^{12}\mathrm{C}$	-97.120 ± 0.470	-97.595 ± 0.057	-97.43 ± 0.44	_
$^{16}\mathrm{O}$	-146.906 ± 0.375	-147.237 ± 0.241	-147.28 ± 1.86	_

 Average ground state binding energies and standard deviations (in MeV) for different nuclei obtained from evaluating 1000 ANNs using the ABS and DIFF method

Statistics

Nuclei	Avg. $E_{\rm g.s.}^{\rm ABS}$	$egin{array}{c} ext{Avg.} & E_{ ext{g.s.}}^{ ext{DIFF}} \ \end{array}$	Extrap.	Conv. result
$^{-2}\mathrm{H}$	-2.182 ± 0.037	-2.220 ± 0.030	-2.183 ± 0.091	-2.200
$^3\mathrm{H}$	-8.534 ± 0.045	-8.496 ± 0.013	-8.473 ± 0.010	-8.481
$^4{ m He}$	-28.554 ± 0.081	-28.534 ± 0.006	-28.525 ± 0.009	-28.524
$^6{ m Li}$	-31.933 ± 0.223	-32.281 ± 0.221	-32.098 ± 0.317	
$^{12}\mathrm{C}$	-97.120 ± 0.470	-97.595 ± 0.057	-97.43 ± 0.44	_
¹⁶ O	-146.906 ± 0.375	-147.237 ± 0.241	-147.28 ± 1.86	

- Average ground state binding energies and standard deviations (in MeV) for different nuclei obtained from evaluating 1000 ANNs using the ABS and DIFF method
- Overall, DIFF method works best

Training ANNs in IR/UV-convergence regions

- Investigate these regions with ANNs to see if correlations between nuclear observables that can be attributed to UV errors are detected
- Enable better extrapolations in the region where the IR truncation errors are converged

Results

Summary and Outlook

- Constructed a universal neural network that was trained on ground state binding energies two different way using easy-to-calculate nuclei
- Extrapolated to heavier, hard-to-converge systems
- Conducted preliminary studies of the IR and UV errors-dominated regions using neural networks
- Investigated how the accuracy of the predictions vary with varying network architecture
- Neural networks may help help detect correlations between observables of different nuclei, which can be used as an extrapolation tool to study nuclei along the proton and neutron drip lines
- Neural networks may be analyzed from first-principles using an effective-theorymotivated approach

Summary of major contributions

- Wave-function-based emulation for nucleon-nucleon scattering in momentum space
 - ajg, C. Drischler, R. J. Furnstahl, J. A. Melendez, and X. Zhang, Phys. Rev. C 107, 054001 (2023), arXiv:2301.05093
- BUQEYE Guide to Projection-Based Emulators in Nuclear Physics
 - C. Drischler, J. A. Melendez, R. J. Furnstahl, ajg, and X. Zhang, Front. Phys. 10, 92931 (2023), arXiv:2212.04912
- Model reduction methods for nuclear emulators
 - J. A. Melendez, C. Drischler, R. J. Furnstahl, ajg, and X. Zhang, J. Phys. G 49, 102001 (2022), arXiv:2203.05528
- Fast & accurate emulation of two-body scattering observables without wave functions
 - J. A. Melendez, C. Drischler, ajg, R. J. Furnstahl, and X. Zhang, Phys. Lett. B 821, 136608 (2021), arXiv:2106.15608
- Efficient emulators for scattering using eigenvector continuation
 - R. J. Furnstahl, ajg, P. J. Millican, and X. Zhang, Phys. Lett. B 809, 135719 (2020), arXiv:2007.03635

+ publicly available python codes to reproduce results!

Thank you!

Extra slides

Model order reduction (MOR)

Constructing a reduced-order model (ROM)

C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023) J.A. Melendez ajg et al., J. Phys. G **49**, 102001 (2022)

- Reduction schemes:
 - Data-driven: interpolate output of high-fidelity model w/o understanding → non-intrusive
 - Examples: Gaussian processes, neural networks
 - Model-driven: derive reduced-order equations from high-fidelity equations \rightarrow intrusive
 - Examples: physics-based, respects underlying structure
- Reduced Basis method (RBM):
 - Sub-class of model-driven scheme
 - Different methods to choose parameter sets
 - A basis is constructed out of snapshots
 - RBM model is built from a global basis projection

Eigen-emulators

Schrödinger equation (weak form): Training set:

$$\langle \zeta | H(\boldsymbol{\theta}) - E(\boldsymbol{\theta}) | \psi \rangle = 0, \quad \forall \langle \zeta | \longrightarrow \{(\boldsymbol{\theta})_i\}$$

$$|\widetilde{\psi}\rangle = \sum_{i=1}^{n_{\mathrm{b}}} \beta_i |\psi_i\rangle \equiv X \vec{\beta},$$

$$X = \left[|\psi_1\rangle |\psi_2\rangle \cdots |\psi_{n_{\mathrm{b}}}\rangle \right],$$

Galerkin approach:

$$\langle \zeta | H(\boldsymbol{\theta}) - \widetilde{E}(\boldsymbol{\theta}) | \widetilde{\psi} \rangle = 0, \quad \forall \langle \zeta | \in \mathcal{Z}$$

C. Drischler, ajg, et al., Front. Phys. **10** 92931 (2023) J.A. Melendez, ajg, et al., J. Phys. G **49**, 102001 (2022)

Choose:

$$|\langle \zeta_i| = |\langle \psi_i| \text{ (Ritz)} \rightarrow |\langle \psi_i| H - \widetilde{E} |\widetilde{\psi}\rangle = 0 \quad \forall \quad i \in [1, n_b]$$

• Produces same set of reduced-order equations as with variational approach!

More general:

$$\langle \zeta_i | \neq \langle \psi_i | \text{ (Petrov - Galerkin)}$$

Scattering emulators

J.A. Melendez, ajg et al., J. Phys. G **49**, 102001 (2022)

 We want to find the solution of a timeindependent differential equation such that

$$D(\psi; \boldsymbol{\theta}) = 0 \quad \text{in } \Omega$$

 $B(\psi; \boldsymbol{\theta}) = 0 \quad \text{in } \Gamma$

where Γ is the boundary and Ω the domain

• Some examples:

$$[-\nabla^2 \psi = g(\theta)]_{\Omega}$$
$$\left[\frac{\partial \psi}{\partial n} = f(\theta)\right]_{\Gamma}$$

Different methods to construct emulators

Variational method → stationary

Trial basis:
$$|\widetilde{\psi}\rangle = \sum_{i=1}^{n_b} \beta_i |\psi_i\rangle$$

J.A. Melendez, ajg et al., J. Phys. G **49**, 102001 (2022)

$$\delta \mathcal{S} = \sum_{i=1}^{n_{\rm b}} \frac{\partial \mathcal{S}}{\partial \beta_i} \delta \beta_i = 0 \longrightarrow \left(\delta \mathcal{S} = A \vec{\beta}_{\star} + \vec{b} = 0 \right)$$

Galerkin projection → use weak form

$$\int_{\Omega} d\Omega \, \zeta D(\psi) + \int_{\Gamma} d\Gamma \, \bar{\zeta} B(\psi) = 0$$

Reduce dimension: $|\psi\rangle \to |\widetilde{\psi}\rangle = \sum_{i=1}^{n_{\text{D}}} \beta_i |\psi_i\rangle$

Test bases :
$$\begin{cases} |\zeta\rangle = \sum_{\substack{i=1\\n_{\rm b}}}^{n_{\rm b}} \delta\beta_i |\zeta_i\rangle \\ |\bar{\zeta}\rangle = \sum_{\substack{i=1\\j=1}}^{n_{\rm b}} \delta\beta_i |\bar{\zeta}_i\rangle \end{cases}$$

$$D(\psi; \boldsymbol{\theta}) = 0 \quad \text{in } \Omega$$

 $B(\psi; \boldsymbol{\theta}) = 0 \quad \text{in } \Gamma$

$$\delta \beta_i \left[\int_{\Omega} d\Omega \, \zeta_i D(\widetilde{\psi}) + \int_{\Gamma} d\Gamma \, \bar{\zeta}_i B(\widetilde{\psi}) \right] = 0$$

Variational vs. Galerkin approach

Example: Poisson equation with Neumann BCs

$$[-\nabla^2 \psi = g(\theta)]_{\Omega} \qquad \left[\frac{\partial \psi}{\partial n} = f(\theta)\right]_{\Gamma}$$

Variational approach

$$\begin{split} \mathcal{S}[\psi] &= \int_{\Omega} d\Omega \Big(\frac{1}{2}\nabla\psi\cdot\nabla\psi - g\psi\Big) - \int_{\Gamma} d\Gamma f\psi \\ \delta\mathcal{S}[\psi] &= \int_{\Omega} d\Omega\,\delta\psi \Big(-\nabla^2\psi - g\Big) - \int_{\Gamma} d\Gamma\,\delta\psi \Big(\frac{\partial\psi}{\partial n} - f\Big) \\ \text{If } \delta\mathcal{S} &= 0 \longrightarrow \text{ Poisson eq} \end{split}$$
 BCs
$$\delta\mathcal{S}[\widetilde{\psi}] &= \sum_{i=1}^{n_{\mathrm{b}}} \frac{\partial\mathcal{S}}{\partial\beta_{i}} \delta\beta_{i} = 0 \longrightarrow \delta\mathcal{S} = \widetilde{A}\overrightarrow{\beta}_{\star} - (\overrightarrow{g} + \overrightarrow{f}) = 0 \end{split}$$

where

$$\widetilde{A}_{ij} = \int_{\Omega} \nabla \psi_i \cdot \nabla \psi_j \qquad g_i = \int_{\Omega} g(\boldsymbol{\theta}) \psi_i \quad f_i = \int_{\Gamma} f(\boldsymbol{\theta}) \psi_i$$

$$|\widetilde{\psi}\rangle = \sum_{i=1}^{n_{\rm b}} \beta_i |\psi_i\rangle \equiv X\vec{\beta},$$

$$X = \left[|\psi_1\rangle |\psi_2\rangle \cdots |\psi_{n_{\rm b}}\rangle\right],$$

Galerkin approach

$$\int_{\Omega} d\Omega \, \zeta \left(-\nabla^2 \psi - g \right) + \int_{\Gamma} d\Gamma \, \zeta \left(\frac{\partial \psi}{\partial n} - f \right) = 0$$

$$\int_{\Omega} d\Omega \, \left(\nabla \zeta \cdot \nabla \psi - g \zeta \right) - \int_{\Gamma} d\Gamma \, f \zeta = 0$$

$$\psi \to \widetilde{\psi} = X \vec{\beta}, \quad \zeta = \sum_{i=1}^{N_{\rm B}} \delta \beta_i \psi_i$$

$$\delta\beta_{i} \left[\int_{\Omega} d\Omega \left(\nabla \psi_{i} \cdot \nabla \psi_{j} \beta_{j} - g \psi_{i} \right) - \int_{\Gamma} d\Gamma f \psi_{i} \right] = 0$$

$$\widetilde{A}_{ij} \qquad g_{i} \qquad f_{i}$$

Deriving Poisson eqs from functional

Apply Green's identity

$$\int_{\Omega} d\Omega \left[\psi \nabla^2 \varphi + \nabla \psi \cdot \nabla \varphi \right] = \int_{\Gamma} d\Gamma \, \psi (\nabla \varphi \cdot \hat{n})$$

1)
$$S[\psi] = \int_{\Omega} d\Omega \left(\frac{1}{2} \nabla \psi \cdot \nabla \psi - g \psi \right) - \int_{\Gamma} d\Gamma f \psi$$

2)
$$\delta \mathcal{S} = \int_{\Omega} d\Omega \left(\nabla \psi \cdot \nabla (\delta \psi) - g \delta \psi \right) - \int_{\Gamma} d\Gamma f \delta \psi$$

3)
$$\int_{\Omega} d\Omega \left[\nabla \psi \cdot \nabla (\delta \psi) \right] = \int_{\Gamma} d\Gamma \, \delta \psi (\nabla \psi \cdot \hat{n}) - \int_{\Omega} d\Omega \left(\delta \psi \nabla^2 \varphi \right)$$

Deriving emulator equation: Variational

$$\mathcal{S}[\widetilde{\psi}] = \int_{\Omega} d\Omega \left(\frac{1}{2} \nabla \widetilde{\psi} \cdot \nabla \widetilde{\psi} - g \widetilde{\psi} \right) - \int_{\Gamma} d\Gamma f \widetilde{\psi}$$

1)
$$A = \frac{1}{2} \nabla \widetilde{\psi} \cdot \nabla \widetilde{\psi} = \frac{1}{2} \beta_j \nabla \psi_j \cdot \beta_k \nabla \psi_k$$

$$2) \frac{\delta A}{\delta \beta_i} = \frac{1}{2} \delta_{ij} \nabla \psi_j \cdot (\beta_k \nabla \psi_k) + \frac{1}{2} (\beta_j \nabla \psi_j) \cdot \delta_{ik} \nabla \psi_k = (\nabla \psi_i \cdot \nabla \psi_j) \beta_i$$

3)
$$\delta S[\widetilde{\psi}] = \delta \beta_i \left[\int_{\Omega} d\Omega \left(\nabla \psi_i \cdot \nabla \psi_j \right) \beta_j - \int_{\Omega} d\Omega g \psi_i - \int_{\Gamma} d\Gamma f \psi_i \right] = 0$$

Deriving emulator equation: Galerkin

$$\int_{\Omega} d\Omega \, \zeta D(\psi) + \int_{\Gamma} d\Gamma \, \bar{\zeta} B(\psi) = 0$$

1)
$$\int_{\Omega} d\Omega \, \zeta \left(-\nabla^2 \psi - g \right) + \int_{\Gamma} d\Gamma \, \zeta \left(\frac{\partial \psi}{\partial n} - f \right) = 0$$

$$1) \qquad \int_{\Omega} d\Omega \, \zeta \Big(-\nabla^2 \psi - g \Big) + \int_{\Gamma} d\Gamma \, \zeta \Big(\frac{\partial \psi}{\partial n} - f \Big) = 0$$
 Apply Green's identity!
$$2) \qquad \int_{\Omega} d\Omega \, \zeta \nabla^2 \psi = - \int_{\Omega} d\Omega \, \nabla \zeta \cdot \nabla \psi + \int_{\Gamma} d\Gamma \, \zeta (\nabla \psi \cdot \hat{n})$$

3)
$$\int_{\Omega} d\Omega \left(\nabla \zeta \cdot \nabla \psi - g \zeta \right) - \int_{\Gamma} d\Gamma f \zeta = 0$$

Assert holds for:
$$\psi \to \widetilde{\psi} = X \vec{\beta}, \qquad \zeta = \sum_{i=1}^{n_{\rm b}} \delta \beta_i \psi_i \quad \longrightarrow \quad \delta \beta_i \Big[\int_{\Omega} d\Omega \left(\nabla \psi_i \cdot \nabla \psi_j \beta_j - g \psi_i \right) - \int_{\Gamma} d\Gamma f \psi_i \Big] = 0$$

Unconstrained KVP emulator

$$H|\psi\rangle = E|\psi\rangle \longrightarrow |\psi\rangle = |\phi\rangle + |\chi\rangle$$

$$(E - H)(|\phi\rangle + |\chi\rangle) = 0 \longrightarrow (E - H)|\chi\rangle = (H - E)|\phi\rangle$$

$$(H - E)|\phi\rangle = (T + V - E)|\phi\rangle = V|\phi\rangle$$

$$(E - H)|\chi\rangle = V|\phi\rangle$$

 $(T-E)|\phi\rangle = 0$

since

. . .

Unconstrained KVP emulator

$$\delta \mathcal{K} = 0$$

$$\delta_{ik} \langle \chi_k | H - E | \chi_j \rangle \beta_j + \delta_{ij} \beta_k \langle \chi_k | H - E | \chi_j \rangle + \delta_{ij} \langle \phi | V | \chi_j \rangle + \delta_{ij} \langle \chi_j | V | \phi \rangle = 0$$

$$2 \langle \chi_i | H - E | \chi_j \rangle \beta_j + 2 \langle \chi_i | V | \phi \rangle = 0$$

 $\langle \chi_i | E - H | \chi_i \rangle \beta_i = \langle \chi_i | V | \phi \rangle$

$$\langle \chi_i | E - H | \chi_j \rangle = [E - (T + V) + V_j - V_j] | \chi_j \rangle \qquad [E - H_j] | \chi_j \rangle = [E - T - V_j] (|\psi_j\rangle - |\phi_j\rangle)$$

$$= [E - H_j] | \chi_j \rangle + [V_j - V] | \chi_j \rangle \qquad = [E - T - V_j] |\psi_j\rangle - (E - T) |\phi_j\rangle + V_j |\phi_j\rangle$$
since $H_j | \chi_j \rangle = (T + V_j) | \chi_j \rangle \qquad = V_j |\phi_j\rangle$

$$[E - H]|\chi_j\rangle = V_j|\phi_j\rangle + [V_j - V]|\chi_j\rangle$$

Comparison between emulators

- Yamaguchi potential for $\ell=0$

C. Drischler, ajg et al., Front. Phys. **10** 92931 (2023)

$$V_{\ell} = \sum_{ij}^{n} |\nu_{i}^{\ell}\rangle \Lambda_{ij}\langle \nu_{j}^{\ell}| \qquad \{\Lambda_{00}, \Lambda_{01}, \Lambda_{11}\} \in [-50, 50] \,\text{MeV}$$

Has an exact (mesh-independent) answer!

Comparison between emulators

• Yamaguchi potential for $\ell=0$

C. Drischler ajg, et al., Front. Phys. **10** 92931 (2023)

$$V_{\ell} = \sum_{ij}^{n} |\nu_i^{\ell}\rangle \Lambda_{ij} \langle \nu_j^{\ell}| \qquad \{\Lambda_{00}, \Lambda_{01}, \Lambda_{11}\} \in [-50, 50] \,\text{MeV}$$

Has an exact (mesh-independent) answer!

Origin emulators

$$\int_{\Omega} d\Omega \, \zeta D(\psi) + \int_{\Gamma} d\Gamma \, \bar{\zeta} B(\psi) = 0$$

$$\int_{\Omega} d\Omega \, \zeta (H - E) + \int_{\Gamma} d\Gamma \, \bar{\zeta} [(r\psi)' - 1] = 0$$

$$\langle \zeta | H - E | \psi \rangle + \bar{\zeta} [(r\psi)' - 1]|_{r=0} = 0$$

Choose test functions

$$\zeta \to \psi_i, \quad \overline{\zeta} \to \overline{\zeta} \text{ such that } \overline{\zeta}(0) = 1$$

$$\langle \psi_i | H - E | \psi_j \rangle \beta_j + \overline{\zeta}(0) \left[\sum_j \beta_j (r\psi_j)'(0) - 1 \right] = 0$$

$$\langle \psi_i | H - E | \psi_j \rangle \beta_j + \sum_j \beta_j - 1 = 0$$

Origin emulator (in coordinate space)

Non-variational-based emulator

C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

Snapshots are composed of the boundary conditions

$$(r\psi) = 0, (r\psi)'(0) = 1 \quad \longrightarrow \quad \langle \psi_i | H - E | \psi_j \rangle \beta_j + \sum_i \beta_j - 1 = 0$$

• Sum of Gaussians potential:

$$V(r, \theta) = \theta_1 \exp(-\kappa_1 r^2) + \theta_2 \exp(-\kappa_2 r^2)$$
 $(\ell = 0)$ $\{\theta_1, \theta_2\} \in [-5, 5] \text{ MeV}$

$$\{\theta_1, \theta_2\} \in [-5, 5] \,\mathrm{MeV}$$

Results for NVP emulator - Extrapolation

- Here: Extrapolation results for NVP
- Cross marks best-fit value for V0s
- Potential:

$$V_{1S_0}(r) \equiv V_{0R}e^{-\kappa_R r^2} + V_{0s}e^{-\kappa_s r^2}$$

- Only vary V_{0s}
- Train with two repulsive parameter sets
- Extrapolate to attractive potentials

J.A. Melendez, ajg et al., Phys. Lett. B 821, 136608 (2021)

Results for NVP emulator with Coulomb

- Problematic for LS equation since it is a long-range interaction
- Solution: cut off potential at short distance $r=r_c$, emulate with new potential, and match conditions with emulated solution to obtain phase shifts
- Matching: finding phase shifts with respect to the Coulomb wave functions
- Here: proton-alpha scattering with non-local potential in s-wave

Results for NVP emulator - Gradients

- Emulate gradients using NVP
- Useful for optimization and sampling algorithms that require gradients
- Examples: Newton's method, Gradient Descent

KVP emulator in coordinate space

Snapshots Implementation:

R.J. Furnstahl, ajg et al., Phys. Lett. B **809**, 135719 (2020) C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

$$|\widetilde{\psi}^\ell
angle \equiv \sum_{i=1}^{n_{
m b}} eta_i |\psi_i^\ell
angle \qquad \Delta \widetilde{U}_{ij}^\ell(m{ heta})$$
 Basis weights

$$\Delta \widetilde{U}_{ij}^{\ell}(\boldsymbol{\theta}) = \frac{2\mu k_0}{\det \boldsymbol{u}} \left[\langle \psi_i^{\ell} | \widehat{V}(\boldsymbol{\theta}) - \widehat{V}_j | \psi_j^{\ell} \rangle + (i \leftrightarrow j) \right]$$
$$\mathcal{L}^{\ell}[\vec{\beta}] = \beta_i L_{E,i}^{\ell} - \frac{1}{2} \beta_i \Delta \widetilde{U}_{ij}^{\ell} \beta_j$$

Coordinate space:

$$\langle \boldsymbol{r} | \psi_{E}(\boldsymbol{\theta_{i}}) \rangle = \frac{u_{E}^{\ell,(i)}(r)}{r} Y_{\ell m}(\Omega_{r}) \longrightarrow u_{E}^{\ell}(r) \xrightarrow{r \to \infty} \frac{1}{k_{0}} \sin\left(k_{0}r - \frac{\ell\pi}{2}\right) + L_{E}^{\ell} \cos\left(k_{0}r - \frac{\ell\pi}{2}\right)$$

$$\Delta \widetilde{U}_{ij}^{\ell}(\boldsymbol{\theta}) = \int_{0}^{\infty} dr \left[u_{i}^{\ell}(r; E) V_{\boldsymbol{\theta}, j}^{\ell}(r) u_{j}^{\ell}(r; E) + (i \leftrightarrow j) \right],$$

$$V_{\boldsymbol{\theta}, j}^{\ell}(r) \equiv \frac{2\mu k_{0}}{\det \boldsymbol{u}} \left[V^{\ell}(r; \boldsymbol{\theta}) - V_{j}^{\ell}(r) \right]$$

$$V_{m{ heta},j}^{\ell}(r) \equiv rac{2\mu k_0}{\det m{u}} ig[V^{\ell}(r;m{ heta}) - V_j^{\ell}(r) ig]$$

Results for a complex potential

- Application of emulator to complex potentials → used for nuclear reactions
- Here: Wood-Saxon optical potential

$$V(r) = V_0 f(r, R_R, a_R) + iW_0 f(r, R_I, a_I)$$
$$f(r, R, a) = (1 + \exp\{(r - R)/a\})^{-1}$$

Emulate the K matrix

$$L_E^\ell o K_E^\ell$$

Optimal values:

$$V_0 = -100 \,\mathrm{MeV}, \ W_0 = -10 \,\mathrm{MeV}$$

Parameter set:

$$\theta_i = \{V_0, W_0\} \text{ vary } \pm 50\%$$

R.J. Furnstahl, ajg et al., Phys. Lett. B **809**, 135719 (2020)

200 sampled parameter sets!

Nonlocal potential

Here: proton-alpha scattering in s-channel

• Emulate the K matrix $L_E^\ell o K_E^\ell$

- Nonlocal potential
- Here: proton-alpha scattering in p-channel
- Emulate the K matrix $L_E^\ell o K_E^\ell$

KVP emulator in momentum space

Implementation:

Snapshots

ajg et al., Phys. Rev. C **107**, 054001 (2023)

$$|\widetilde{\psi}^s
angle \equiv \sum_{i=1}^{n_{
m b}} eta_i |\psi_i^s
angle$$
 Basis weights

$$|\widetilde{\psi}^s\rangle \equiv \sum_{i=1}^{n_{\rm b}} \beta_i |\psi_i^s\rangle \qquad \Delta \widetilde{U}_{ij}^{ss'}(\boldsymbol{\theta}) = \frac{2\mu k_0}{\det \boldsymbol{u}} \left[\langle \psi_i^s | \widehat{V}(\boldsymbol{\theta}) - \widehat{V}_j | \psi_j^{s'} \rangle + (i \leftrightarrow j) \right]$$
 Basis weights
$$\mathcal{L}^{ss'}[\overrightarrow{\beta}\,] = \beta_i L_{E,i}^{ss'} - \frac{1}{2} \beta_i \Delta \widetilde{U}_{ij}^{ss'} \beta_j$$

Momentum space:

$$\psi^{st}(k;k_0) = \frac{1}{k^2}\delta(k-k_0)\delta^{st} + \frac{2}{\pi}\mathbb{P}\frac{K^{st}(k,k_0)/k_0}{k^2 - k_0^2}$$

For coordinate space implementation:

R.J. Furnstahl, ajg et al., Phys. Lett. B **809**, 135719 (2020) C. Drischler, ajg et al., Front. Phys. 10 92931 (2023)

$$\Delta \widetilde{U}_{ij}^{ss'}(\boldsymbol{\theta}) = \int_{0}^{\infty} \int_{0}^{\infty} dk \, dp \, k^2 p^2 \left[\psi_i^{ts}(k) V_{\boldsymbol{\theta},j}^{tt'}(k,p) \psi_j^{t's'}(p) + (i \leftrightarrow j) \right],$$

$$V_{\boldsymbol{\theta},j}^{tt'}(k,p) \equiv \frac{2\mu k_0}{\det \boldsymbol{u}} \left[V^{tt'}(k,p;\boldsymbol{\theta}) - V_j^{tt'}(k,p) \right]$$

Chiral EFT potentials for NN scattering

P. Reinert et al., Eur. Phys. J B **54**, 86 (2018)

- Here: semi-local momentum-space regularized potential
- Affine dependence on the low-energy couplings (LECs):

$$V(\boldsymbol{\theta}) = V^0 + \boldsymbol{\theta} \cdot \boldsymbol{V}^1$$
 $\Delta \widetilde{U}(\boldsymbol{\theta}) = \Delta \widetilde{U}^0 + \boldsymbol{\theta} \cdot \Delta \widetilde{\boldsymbol{U}}^1$

- → only calculate matrix elements once!
- Emulate neutron-proton (np) observables at multiple cutoffs

Results for 1S0 channel

- Three parameters $\rightarrow n_{\rm b} = 6$
- Parameters sampled using Latin-hypercube sampling (LHS)
- Glöckle spline interpolation:

$$\sum_{k} f(k)S_k(k_0) \to f(k_0)$$

Emulation of coupled channels

• Depends on the Petrov-Galerkin formalism

ajg et al., Phys. Rev. C 107, 054001 (2023)

$$\Delta \widetilde{U} = \begin{pmatrix} \Delta \widetilde{U}^{00} & \Delta \widetilde{U}^{01} \\ \Delta \widetilde{U}^{10} & \Delta \widetilde{U}^{11} \end{pmatrix} \qquad \Delta \widetilde{U}_{ij}^{ss'} = \int_{0}^{\infty} \int_{0}^{\infty} dk \, dp \, k^2 p^2 \left[\Delta u_{ij}^{ss'} + (i \leftrightarrow j) \right]$$

$$\Delta u_{ij}^{00} = \psi_i^{00} (V_{\theta,j}^{00} \psi_j^{00} + V_{\theta,j}^{01} \psi_j^{10}) + \psi_i^{10} (V_{\theta,j}^{10} \psi_j^{00} + V_{\theta,j}^{11} \psi_j^{10})$$

$$\Delta u_{ij}^{01} = \psi_i^{00} (V_{\theta,j}^{00} \psi_j^{01} + V_{\theta,j}^{01} \psi_j^{11}) + \psi_i^{10} (V_{\theta,j}^{10} \psi_j^{01} + V_{\theta,j}^{11} \psi_j^{11})$$

$$\Delta u_{ij}^{10} = \psi_i^{01} (V_{\theta,j}^{00} \psi_j^{00} + V_{\theta,j}^{01} \psi_j^{10}) + \psi_i^{11} (V_{\theta,j}^{10} \psi_j^{00} + V_{\theta,j}^{11} \psi_j^{10})$$

$$\Delta u_{ij}^{11} = \psi_i^{01} (V_{\theta,j}^{00} \psi_j^{01} + V_{\theta,j}^{01} \psi_j^{11}) + \psi_i^{11} (V_{\theta,j}^{10} \psi_j^{01} + V_{\theta,j}^{11} \psi_j^{11})$$

Results for coupled channels

ajg et al., Phys. Rev. C 107, 054001 (2023)

- Six non-redundant LECs $\rightarrow n_{\rm b} = 12$
- Parameters sampled using Latin-hypercube sampling (LHS) $m{ heta}_i \in [-5,5]$
- Glöckle spline interpolation:

Total cross section emulation

ajg et al., Phys. Rev. C 107, 054001 (2023)

- Partial waves up to j = 20
- Used LHS to sample 500 parameter sets in an interval of [-5, 5]
- Errors negligible compared to other uncertainties
- Speed is highly implementationdependent!
- Consistent for $\Lambda = 400 550\, MeV$
- Different cutoff!

Total cross section emulation w/ anomalies

- Partial waves up to j = 20
- Used LHS to sample 500 parameter sets in an interval of [-5, 5]
- Glöckle spline interpolation:

$$\sum_{k} f(k)S_k(k_0) \to f(k_0)$$

- Errors negligible compared to other uncertainties
- Speed is highly implementationdependent!
- Consistent for $\Lambda = 400 550\,\mathrm{MeV}$

Table of spin observables emulation

		${ m d}\sigma/{ m d}\Omega$		D		A_y		A_{yy}		A	
Basis size	$E~[\mathrm{MeV}]$	Std.	Glöckle	Std.	Glöckle	Std.	Glöckle	Std.	Glöckle	Std.	Glöckle
$n_b = n_a$	5	-1.2	-1.2	-0.93	-0.93	-0.46	-0.46	-0.72	-0.72	-0.78	-0.78
	100	-0.73	-0.73	-0.47	-0.47	-0.12	-0.12	-0.20	-0.20	-0.28	-0.28
	200	-0.54	-0.64	-0.30	-0.30	-0.028	-0.028	-0.035	-0.035	-0.12	-0.12
	300	-0.49	-0.49	-0.24	-0.24	-0.066	-0.066	-0.037	-0.037	-0.043	-0.043
$n_b=2n_a$	5	-10	-7.0	-8.8	-6.1	-8.8	-5.6	-8.5	-5.8	-8.3	-5.9
	100	-12	-6.3	-11	-5.1	-10	-4.9	-10	-4.9	-11	-5.3
	200	-10	-4.0	-8.8	-3.2	-7.8	-2.7	-8.4	-2.9	-8.0	-3.0
	300	-12	-4.9	-11	-4.0	-11	-3.9	-9.9	-3.8	-11	-3.9
$n_b = 4n_a$	5	-10	-7.3	-8.8	-6.4	-8.8	-6.1	-8.5	-6.4	-8.3	-6.1
	100	-13	-6.5	-12	-5.3	-11	-5.1	-11	-5.0	-11	-5.4
	200	-10	-4.4	-9.3	-3.6	-8.5	-3.0	-8.8	-3.3	-8.8	-3.3
	300	-12	-5.1	-11	-4.0	-10	-4.1	-10	-3.8	-11	-4.0

Angle-averaged relative errors (base-10 logarithm)

 $\Lambda = 450 \text{ MeV}$

- Different basis size
- Consistent for $\Lambda = 400 550 \, \mathrm{MeV}$

ajg et al., Phys. Rev. C 107, 054001 (2023)

Neural networks

- Different types of networks:
 - Supervised learning
 - Desired output already known
 - Unsupervised learning
 - Desired output unknown
- Key to neural networks
 - Layers transform the inputs using a series of mathematical operations
 - Learns how to map the inputs to the outputs

How do neural networks work

- Input data is split into train, validation, and test sets
- Further split into training and target inputs
- Hidden layers are responsible for learning the patterns found in the data set
- Output gives us what the network thinks the target inputs are given the data set
- Determine how close the prediction is by calculating the loss function
- If condition is not met, the weights are fine-tuned in backpropagation

Basics of training

1)
$$w_0 + \vec{w} \cdot \vec{x} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$$

$$y = f(w_0 + \vec{w} \cdot \vec{x})$$

$$L(\hat{y}, y)$$

Training process

Different components: initializer

- Used to initialize the weights
- Randomly sample weights from some distribution
- Most common method is Glorot Uniform
- Glorot initialization maintains the same smooth distribution throughout the training process due to normalization

Activation functions

- Used to initialize the weights
- Randomly sample weights from some distribution
- Glorot initialization maintains the same smooth distribution throughout training process due to normalization

Different components: activation function

ReLU pros:

- Prevents vanishing gradients since derivative is 0 or 1
- Computationally more efficient
- Better convergence performance

ReLU cons:

- Outputs are unconstrained and can cause issues
- Dying ReLU problem: too many activations are below zero which can limit learning
- Can be prevented using leaky ReLU

Different components: loss function

- Used to calculate the error between prediction and target
- Here: mean-square-error (MSE)

$$L_{\text{MSE}} = \sum_{i=1}^{N} \frac{(\hat{y}_i - y_i)^2}{N},$$

- Plane: predictions
- Red dots: target inputs
- Goal is to minimize distance between the red dots and plane

Different components: optimizer

- Algorithm used to minimize the loss
- Learning rate is used to scale gradients
 - Prevents weights from changing too fast
- Common optimizers:
 - Stochastic gradient descent (SGD)
 - ADAM
- SGD: adjusts all parameters with same learning rate
 - Slower convergence, but can perform better on unseen data
- ADAM: each parameter has own learning rate
 - May converge too rapidly and fall into non-ideal minimum

Backpropagation

- Weights get adjusted by an optimization algorithm in such a way as to minimize the loss
- Derivative of the loss function with respect to every weight in the current layer is calculated, multiplied by the learning rate, and subtracted from the corresponding weights
- New weights are passed to the next layer
- Process continues until all the weights in the network are adjusted
- Network undergoes a forward pass and recalculates a training and validation loss
- Process is repeated until a desired accuracy has been reached or until the model is trained as many times as the user chooses